A Deep Learning Based Fast Image Saliency Detection Algorithm
نویسندگان
چکیده
In this paper, we propose a fast deep learning method for object saliency detection using convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify the input images based on the pixel-wise gradients to reduce a pre-defined cost function, which is defined to measure the class-specific objectness and clamp the class-irrelevant outputs to maintain image background. The pixel-wise gradients can be efficiently computed using the back-propagation algorithm. We further apply SLIC superpixels and LAB color based low level saliency features to smooth and refine the gradients. Our methods are quite computationally efficient, much faster than other deep learning based saliency methods. Experimental results on two benchmark tasks, namely Pascal VOC 2012 and MSRA10k, have shown that our proposed methods can generate high-quality salience maps, at least comparable with many slow and complicated deep learning methods. Comparing with the pure low-level methods, our approach excels in handling many difficult images, which contain complex background, highly-variable salient objects, multiple objects, and/or very small salient objects.
منابع مشابه
Deep Learning for Object Saliency Detection and Image Segmentation
In this paper, we propose several novel deep learning methods for object saliency detection based on the powerful convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify an input image based on the pixel-wise gradients to reduce a cost function measuring the class-specific objectness of the image. The pixel-wise gradients can be efficiently compute...
متن کاملA Fast and Compact Saliency Score Regression Network Based on Fully Convolutional Network
Visual saliency detection aims at identifying the most visually distinctive parts in an image, and serves as a pre-processing step for a variety of computer vision and image processing tasks. To this end, the saliency detection procedure must be as fast and compact as possible and optimally processes input images in a real time manner. It is an essential application requirement for the saliency...
متن کاملWeakly Supervised Salient Object Detection Using Image Labels
Deep learning based salient object detection has recently achieved great success with its performance greatly outperforms any other unsupervised methods. However, annotating per-pixel saliency masks is a tedious and inefficient procedure. In this paper, we note that superior salient object detection can be obtained by iteratively mining and correcting the labeling ambiguity on saliency maps fro...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملReduced-Reference Image Quality Assessment based on saliency region extraction
In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.00577 شماره
صفحات -
تاریخ انتشار 2016